

Industry trends of Nuclear Energy

• Nuclear Energy can be a potential option to realize the Paris Agreement and initiatives has been taken with a focus on improving safety, reducing both risks and costs.

	Development	Design, manufacturing, and construction	Operation and maintenance	Decommissioning and back-end
lssues	 Transparent and continuous political support Reducing investment risks related to uncertainty 	 Improving safety Improving economic efficiency Improving flexibility Technology transfer 	 Reducing operational and maintenance costs Extending the life of existing reactors and improving safety 	• Constructing a nuclear fuel cycle
Industry trends	Challenging the rate system to reduce investment risks (RAB in UK, ZEC in the US)	Constructing advanced reactors in emerging countries (China, India, UAE, etc.)	 Extending the licenses (SLE in the US, 100-year license, Grand Carénage Programme in France, etc.) and improving safety Reducing O&M costs in response to intensifying competition from other power sources (US) 	 Locating the final disposal sites and co-existing with local communities
	Demonstrating next- generation reactors such as SMRs using public funds (CFPP in the US)	 Developing SMR Developing Generation IV reactors 		

Technology trends of Nuclear Energy

 The development of SMRs for new facilities is gaining momentum, whereas for existing facilities, digital technology is being used to improve safety and reduce O&M costs.

Development of SMRs

Issues

- Responding to safety concerns regarding Nuclear Energy
- Dealing with the excessive cost-overrun of newly Installed Light-water reactors (LWRs)
- Integrated operation with rapidly spreading renewable energy

Innovations

- The IAEA* has summarized the 55 reactor types of SMRs being developed worldwide.
- All of them are characterized in terms of safety, economic efficiency, and flexibility.
 - ✓ Safety: Passive safety system (e.g. cooling without the pump)
 - Economic efficiency: Simple design, reducing cost by modularization, and relatively easy to finance due to small-scale
 - Flexibility: Some designs take advantage of the SMRs to increase operational flexibility. There are also floating reactors that offer flexibility in location
- High-temperature technologies, such as high-temperature gas reactors are also envisaged for industrial applications

Safety Improvement and O&M Cost Reduction

Issues Improving competitiveness against renewable energy and existing energy sources

• Reducing operation costs while improving safety

Innovations

- Upgrading existing plants through the introduction of digital instruments, etc., to improve safety and economy at the same time
- Standardizing business processes for asset management and maintenance based on RCM (Reliability Centered Maintenance) using Big data and AI is becoming more advanced
- Developing Accident Tolerant Fuel (ATF), which prevents severe accidents even in the event of a severe situation such as the loss of all power sources
- Initiatives are also underway to share know-how in the supply chain

