

FUJIKAWA Shigenori

Position/Department/Division/Institution/Organization

Distinguished Professor, International Institute for Carbon Neutral Energy Research, Kyushu University

Country

<u>Japan</u>

Career history

1999-2000	Research fellow	of Japan Society	for the Promo	tion of Science	(JSPS), Yale
-----------	-----------------	------------------	---------------	-----------------	--------------

University, US

2000-2007 Post doctorate Researcher, RIKEN, Japan

2007-Present Board Member, NanoMembrane Technologies Inc.

2004-2012 Deputy team leader, RIKEN, Japan

2007-2009 Team Leader, RIKEN, Japan

2011-2021 Associate Professor, International Institute for Carbon-Neutral

Energy Research, Kyushu University, Japan

2021-Present Professor, International Institute for Carbon-Neutral Energy

Research, Kyushu University, Japan

2021-Present Director, Research Center for Negative Emissions Technologies, Kyushu

University, Japan

2021-Present Distinguished Professor, Kyushu University, Japan

Awards/Publications

Selected Publication

- 1. Fujikawa, S.; Selyanchyn, R. Direct Air Capture by Membranes. MRS Bull. 2022.
- 2. Fujikawa, S.; Selyanchyn, R.; Kunitake, T. A New Strategy for Membrane-Based Direct Air Capture. *Polym. J.* **2021**, *53* (1), 111–119.
- 3. Ariyoshi, M.; Fujikawa, S.; Kunitake, T. Robust, Hyper-Permeable Nanomembrane Composites of Poly(Dimethylsiloxane) and Cellulose Nanofibers. *ACS Appl. Mater. Interfaces* **2021**, *13* (51), 61189–61195.
- 4. Selyanchyn, O.; Selyanchyn, R.; Fujikawa, S. Critical Role of the Molecular Interface in Double-Layered Pebax-1657/PDMS Nanomembranes for Highly Efficient CO₂/N₂ Gas Separation. *ACS Appl. Mater. Interfaces* **2020**, *12* (29), 33196–33209.
- 5. Selyanchyn, R.; Fujikawa, S. Molecular Hybridization of Polydimethylsiloxane with Zirconia for Highly Gas Permeable Membranes. *ACS Appl. Polym. Mater.* **2019**, *1* (5), 1165–1174.
- 6. Fujikawa, S.; Ariyoshi, M.; Selyanchyn, R.; Kunitake, T. Ultra-Fast, Selective CO₂ Permeation by Free-Standing Siloxane Nanomembranes. *Chem. Lett.* **2019**, *48* (11), 1351–1354.
- Selyanchyn, R.; Fujikawa, S. Membrane Thinning for Efficient CO₂ Capture. Sci. Technol. Adv. Mater. 2017, 18 (1), 816–827.

Awards

2015: ISIT Nanotechnology award, Institute of Systems, Information Technologies

and Nanotechnologies, Japan

2007: The Nanofabrication Technology award of International Nanotechnology

Exhibition and Conference

2006: Gordon Bell Prize Honorable Mention, Peak Performance, US

Supercomputing Conference

Areas of expertise

His research interests include nanofabrication, surface nanoscience, and membrane science. Currently, he is mainly working on carbon dioxide capture directly from the air using nanometer-thick membranes. He is now the project manager of the Moonshot R&D Program, supported by New Energy and Industrial Technology Development Organization (NEDO) in Japan, and is conducting researched on the development of carbon dioxide recycling system for "Beyond-Zero" emissions.