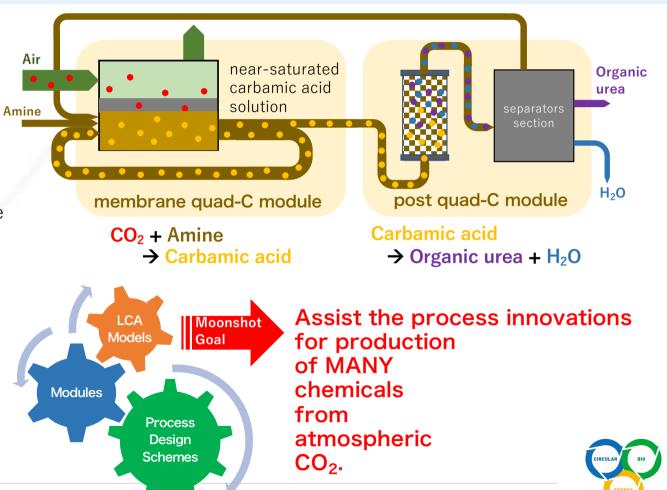


Energy-saving production of organic urea and carbamates from atmospheric CO₂:

Life Cycle Perspectives on Combined Carbon Capture and Conversion Approaches

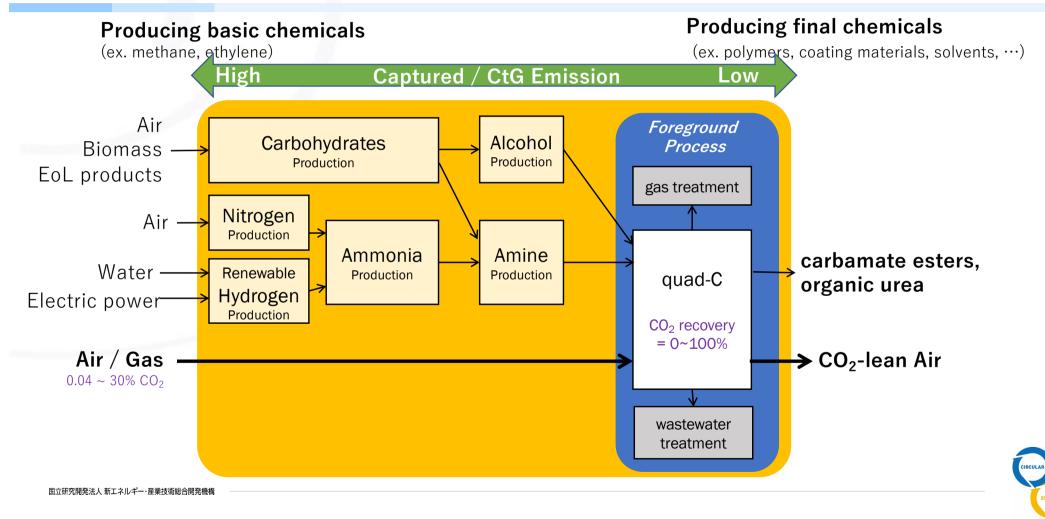
5th October 2022


Yasuhiro FUKUSHIMA, Tohoku University, Japan

Combined Carbon Capture and Conversion (quad-C)

国立研究開発法人 新エネルギー・産業技術総合開発機構

- Low energy consumption
 - no reduction of carbon in \mbox{CO}_2
 - Carbamides (organic ureas)
 - Carbamate esters (ex. PUR materials)
 - no CO_2 desorption
 - capture and conversion take place in a single process operation by using dual function materials
- Safety (non-phosgene route)
 - Many utilize phosgene as the carbonyl source
 - → Some start to utilize Urea, Carbonates, or CO₂
 - We utilize heterogeneous (solid) catalyst that makes the process simpler and more efficient

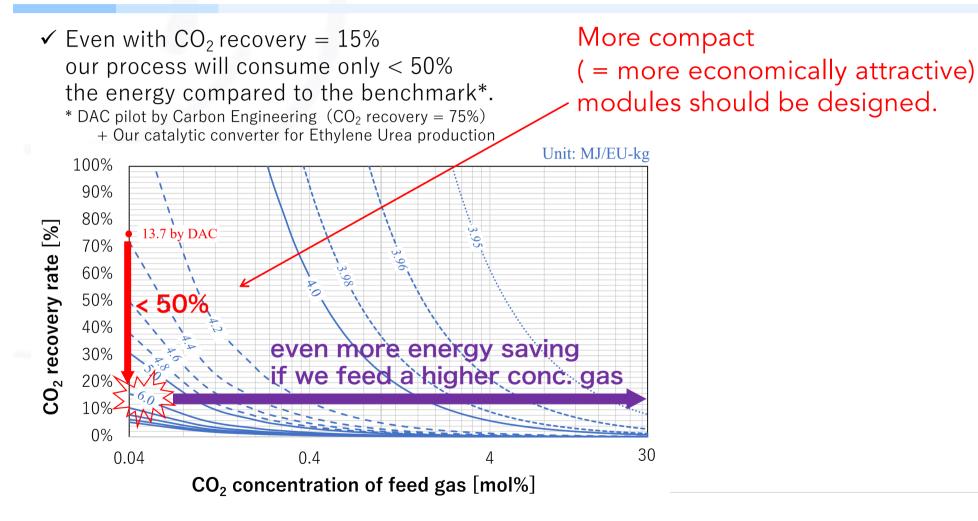


NEDO

MOONSHO

Characteristics of chemicals from CO₂

Life Cycle Perspectives: Indicators for Validation of C-balance



LCA for Validation of Carbon Balance

Abbrev.	Chemicals IUPAC name	Fixed CO₂ when produced via DAC kg-CO ₂ / kg-product	Cradle to Gate emission for DAC kg-CO ₂ / kg-product	Opportunity for CO₂ utilization a End of Life
0	2-imidazolidinone maldehyde scavenger, esins, Agrochemicals, etc.	- 0.511	9.7 – 11.0 quad-C@2020	Incineration Wastewater treatment Dissipation into atmosphere
Background Emission Inventories @current ➢ EDA: 5.47 kg-CO₂ eq. /kg-EDA ➢ Elec. Power: 0.594 kg-CO₂ eq. /kWh NEDO recommends … 0.158 @2030 0.00665 @ 2040			 This is lower than current method. Most of the emissions are from reactants and electric power. → will approach to zero, by 2050. Low energy consumption becomes important to reduce the competition with other purposes. 	

Life Cycle Perspectives: **Providing insights to module design**

Future vision of quad-C based DAC-U

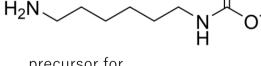
Outputs: To develop quad-C processes tuned for 4 chemicals

- → demonstrate at project pilot and commercial pilot
- → sufficient variety to cover major module combinations

To provide process design templates

ightarrow assist process innovations for other chemicals

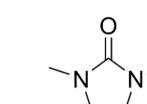
Outcomes Producing most of the carbamate esters and organic ureas using quad-C processes.


formaldehyde scavenger, agrochemicals, etc.

NH

HN

SUPPLEMENTARY


Aprotic solvent

(potential) PUR raw material

precursor for PUR raw material (i.e., HDI)

