

Overview of NEDO Green Innovation Fund Projects toward achieving the 2050 Carbon Neutrality

October 6th, 2022 Innovation for Cool Earth Forum 9th Annual Meeting

IIMURA Akiko, Ph.D.

Director General, Green Innovation Fund Projects Coordination Office, Director General, Technology Strategy Center, New Energy and Industrial Technology Development Organization

Japan's policies for carbon neutrality in 2050

(Source) Ministry of Economy, Trade and Industry, Japan

- In October 2020, Japan declared that it aims to achieve carbon neutrality by 2050.
- The Ministry of Economy, Trade and Industry in collaboration with other ministries and agencies, formulated the "Green Growth Strategy through Achieving Carbon Neutrality in 2050".
- This strategy specifies 14 promising fields that are expected to grow and provides action plans for them from the viewpoints of both industrial and energy policies.

14 growth sectors

Creation of 2 trillion yen "the Green Innovation Fund" for NEDO

Continuous support for up to 10 years From ambitious R&D to social implementation

Management commitment

The Green Innovation Fund Projects

Offshore Wind Power

Hydrogen Production

irculation

Basic chemicals

Functional chemicals

Carbon Recycling (Chemical)

Perovskite Solar Cell

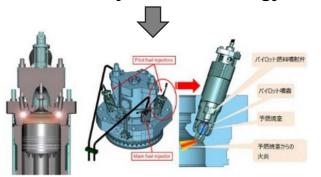
Hydrogen Supply Chain

Synthetic methane LPG Carbon Recycling (Fuel)

Synthetic fuels

Carbon Recycling (Concrete and Cement) ₃

Next-generation Ship Development



- In the shipping sector, <u>hydrogen, ammonia, and carbon-recycled methane are expected to be</u> <u>used as zero-emission ship fuels</u>; however, their adoption will depend considerably on the fuel prices and the development of the fuel supply infrastructure.
- In this project, we will <u>develop and demonstrate the engine, fuel tank, fuel supply system</u>, and other components for next-generation ships and develop the infrastructure for ammonia fuel supply to ships, including the developing of an ammonia bunkering ship.

Hydrogen/ammonia-fueled engine

Hydrogen: extremely flammableAmmonia: fire retardants, generates N2O

<u>Requires advanced combustion control</u> <u>and fuel injection technology</u>

LNG fuel injection technology (Source) IHI Power Systems Co.,Ltd.

Fuel tank/fuel supply system		
	Hydrogen	Ammonia
Volume	4.5 times	2.7 times
Boiling point	−253 °C	-33 °C
Issues	leakage, brittleness	corrosive, toxic
XVolume comparison with C heavy oil		

Requires space saving, structural optimization, and material optimization

Current LNG fuel tank and fuel supply system (Source) Mitsubishi Heavy Industries

Measures against methane slip

• Development of technology to reduce the unburned methane contained in the exhaust gas from an LNG-fueled ship.

Ship ammonia fuel supply

• Developed an ammonia bunkering ship that supplies fuel to ammonia-fueled ships.

Current LNG bunkering ship

Next-generation Aircraft Development

- To realize carbon neutrality in the aviation field, realizing sustainable aviation fuels (SAFs) and innovations such as <u>aircraft weight reduction, engine efficiency improvement and</u> <u>electrification, hydrogen aircraft development</u>, etc. are necessary.
- Entire aircraft is developed by European and American OEM manufacturers (Boeing, Airbus). Japan will develop <u>core technologies for hydrogen aircraft</u> and technologies for <u>lightweight primary</u> <u>structural components with complex shapes for them</u>.

Next-generation aircraft (image)

(Source) Airbus SE, The Boeing Company

Technical issues

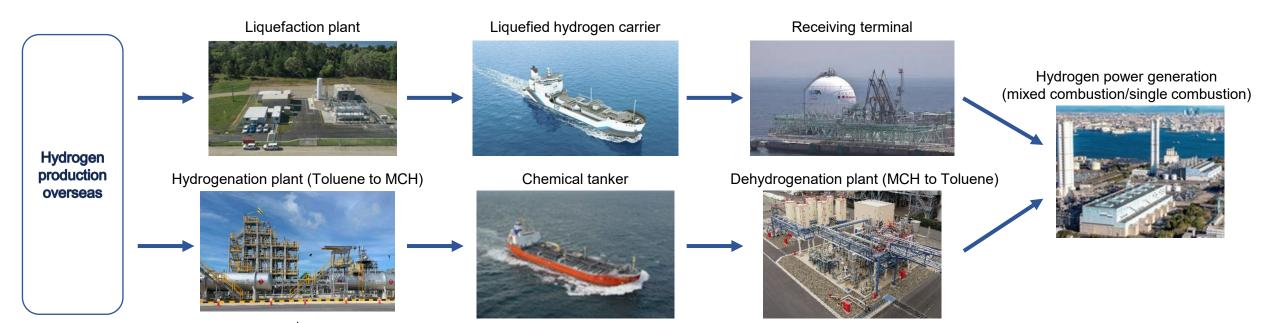
<Engine combustor>

⇒To develop a hydrogen combustion method, combustor material, cooling technology, etc.

<Hydrogen fuel storage tank>

⇒To develop lightweight and safe tank materials that can store the required amount of liquid hydrogen.

<Airframe design concept and responses to complex shape of aircraft structure>


⇒To develop composite materials that have the strength and lightness necessary for realizing hydrogen aircraft.

Project Overview

Large-scale Hydrogen Supply Chain Establishment

- Toward the realization of a hydrogen society, the project will promote <u>the construction of a large-scale hydrogen supply chain as well as demand creation</u>.
- Using multiple hydrogen carriers (liquefied hydrogen, methylcyclohexane (MCH)), the project aims to reducing supply costs to 30 yen/Nm³ in 2030 and 20 yen/Nm³ or lesser in 2050 (equivalent to fossil fuels) by the development and demonstration of large-scale transportation equipment and hydrogen combustion stability in actual hydrogen power generation equipment.

Large-scale hydrogen supply chain using a hydrogen carrier (image)

oluen

Project Overview

Hydrogen Production through Water Electrolysis Using Power from Renewables

 To establish domestic hydrogen production bases that utilize surplus renewables, etc. and to acquire the overseas market, this project <u>aims to further reduce the equipment cost (up to approximately</u> <u>1/6 of the current cost) by increasing the size and modularizing multiple types of water</u> <u>electrolyzers (alkaline and polymer electrolyte membrane (PEM) types), implementing</u> <u>membranes, and demonstrating power-to-X systems</u>.

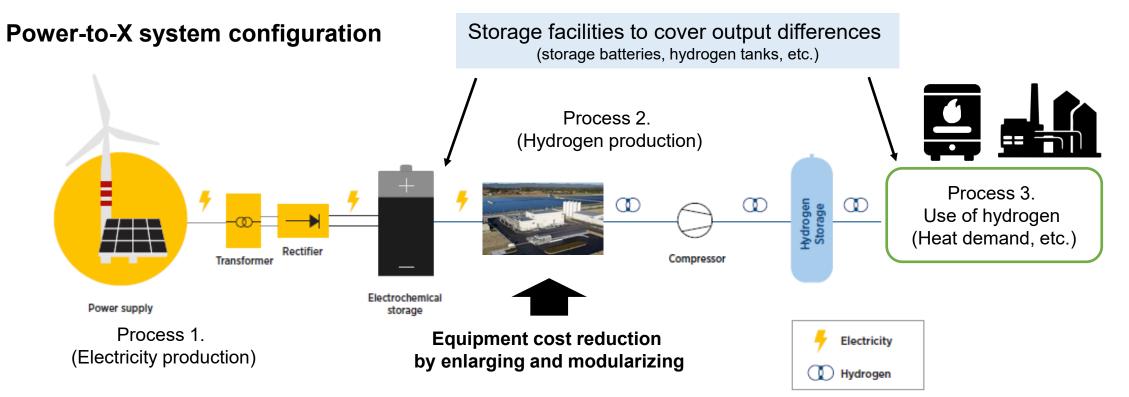
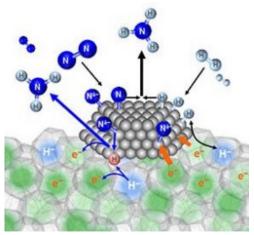
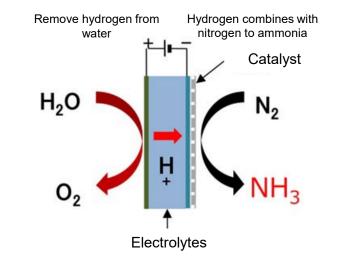


Image (Fukushima Hydrogen Energy Research Field)

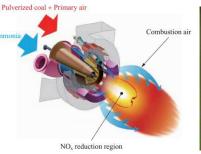

Fuel Ammonia Supply Chain Establishment

- Ammonia supply is limited to raw materials such as fertilizers; therefore, <u>building a large-scale fuel</u> <u>ammonia supply chain integrating use and supply sides</u> is necessary.
- We will <u>develop and demonstrate a manufacturing method for fuel ammonia with large-scale production, cost reduction, and reduction in CO2 emissions</u>, as well as <u>develop technologies</u> for high-mixed and single firing.

Ammonia synthesis technology


 Developed a synthetic method superior to the Haber–Bosch method to reduce the synthesis cost of blue ammonia (at least 15%).

Catalyst separates nitrogen and hydrogen molecules and combines them to form ammonia..


Green ammonia synthesis

 By the development of catalysts and electrolytes, we will develop a new production method without using hydrogen to realize cost reductions for green ammonia.

Manufacture of burners

 Aiming for high-mixed and single firing in boilers and gas turbines, we will develop high-mixed and single firing burners (50% or more in actual equipment).

(Source) IHI

Green Innovation Fund Projects

Working toward a carbon-neutral future.

The driving force behind Japan's future growth is the challenge of achieving carbon neutrality.

Now is the time for Japan-A technological superpower One world-changing innovation after another.

Working together to create a carbon-neutral future. A new Japan is waiting in 2050.

